The deprotonated guanine-cytosine base pair.

نویسندگان

  • Maria C Lind
  • Partha P Bera
  • Nancy A Richardson
  • Steven E Wheeler
  • Henry F Schaefer
چکیده

Awareness of the harmful effects of radiation has increased interest in finding the mechanisms of DNA damage. Radical and anion formation among the DNA base pairs are thought to be important steps in such damage [Collins, G. P. (2003) Sci. Am. 289 (3), 26-27]. Energetic properties and optimized geometries of 10 radicals and their respective anions derived through hydrogen abstraction from the Watson-Crick guanine-cytosine (G-C) base pair have been studied using reliable theoretical methods. The most favorable deprotonated structure (dissociation energy 42 kcal x mol(-1), vertical detachment energy 3.79 eV) ejects the proton analogous to the cytosine glycosidic bond in DNA. This structure is a surprisingly large 12 kcal x mol(-1) lower in energy than any of the other nine deprotonated G-C structures. This system retains the qualitative G-C structure but with the H...O2 distance dramatically reduced from 1.88 to 1.58 A, an extremely short hydrogen bond. The most interesting deprotonated G-C structure is a "reverse wobble" incorporating two N-H...N hydrogen bonds. Three different types of relaxation energies (4.3-54 kcal x mol(-1)) are defined and reported to evaluate the energy released via different mechanisms for the preparation of the deprotonated species. Relative energies, adiabatic electron affinities (ranging from 1.93 to 3.65 eV), and pairing energies are determined to discern which radical will most alter the G-C properties. The most stable deprotonated base pair corresponds to the radical with the largest adiabatic electron affinity, 3.65 eV. This value is an enormous increase over the electron affinity (0.60 eV) of the closed-shell G-C base pair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

The effect of some mono and bivalent metal cations on the individual hydrogen bond energies in A−T and G−C base pairs

The effect of interactions of various Ia and IIa cations with two positions of the adenine-thymine (A−T) and guanine-cytosine (G−C) base pairs on the geometries and individual hydrogen bond (HB) energies have been investigated by using the atoms in molecules (AIM) method at the B3LYP/6-311++G(d,p) level of theory. The cations that possess higher charge/radius (q/rad) ratio make higher changes o...

متن کامل

Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations.

Photoinduced processes in the Watson-Crick guanine-cytosine base pair are comprehensively studied by means of long-range corrected (LC) TDDFT calculations of potential energy profiles using the LC-BLYP and CAM-B3LYP functionals. The ab initio CC2 method and the conventional TDDFT method with the B3LYP functional are also employed to assess the reliability of the LC-TDDFT method. The present app...

متن کامل

Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair

We investigate the attack of the nitrogen dioxide radical (NO(•) 2) to the guanine-cytosine (GC) base pair and the subsequent tautomeric reactions able to induce mutations, by means of density functional theory (DFT) calculations. The conducted simulations allow us to identify the most reactive sites of the GC base pair. Indeed, the computed relative energies demonstrate that the addition of th...

متن کامل

Ionization Potential and Structure Relaxation of Adenine, Thymine, Guanine and Cytosine Bases and Their Base Pairs: A quantification of reactive sites

We present Density Functional Theory (DFT) calculations using B3LYP/631++G** method to show relaxation in geometry of base pairs on cation radical formation. The changes in hydrogen bond length and angles show that in the cationic radical form the structure of the base pairs relaxes due to the distribution of charge. Eventually according to a recent study it has been found that, upon excitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2006